fork download
  1. # your code goes here
  2. """ base58 encoding / decoding functions """
  3. import unittest
  4.  
  5. alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
  6. base_count = len(alphabet)
  7.  
  8. def encode(num):
  9. """ Returns num in a base58-encoded string """
  10. encode = ''
  11.  
  12. if (num < 0):
  13. return ''
  14.  
  15. while (num >= base_count):
  16. mod = num % base_count
  17. encode = alphabet[mod] + encode
  18. num = num / base_count
  19.  
  20. if (num):
  21. encode = alphabet[num] + encode
  22.  
  23. return encode
  24.  
  25. def decode(s):
  26. """ Decodes the base58-encoded string s into an integer """
  27. decoded = 0
  28. multi = 1
  29. s = s[::-1]
  30. for char in s:
  31. decoded += multi * alphabet.index(char)
  32. multi = multi * base_count
  33.  
  34. return decoded
  35.  
  36. class Base58Tests(unittest.TestCase):
  37.  
  38. def test_alphabet_length(self):
  39. self.assertEqual(58, len(alphabet))
  40.  
  41. def test_encode_10002343_returns_Tgmc(self):
  42. result = encode(10002343)
  43. self.assertEqual('Tgmc', result)
  44.  
  45. def test_decode_Tgmc_returns_10002343(self):
  46. decoded = decode('Tgmc')
  47. self.assertEqual(10002343, decoded)
  48.  
  49. def test_encode_1000_returns_if(self):
  50. result = encode(1000)
  51. self.assertEqual('if', result)
  52.  
  53. def test_decode_if_returns_1000(self):
  54. decoded = decode('if')
  55. self.assertEqual(1000, decoded)
  56.  
  57. def test_encode_zero_returns_empty_string(self):
  58. self.assertEqual('', encode(0))
  59.  
  60. def test_encode_negative_number_returns_empty_string(self):
  61. self.assertEqual('', encode(-100))
  62.  
  63. if __name__ == '__main__':
  64. #print encode(int("00B94BA6C51B3D8372D82FDE5DC78773D960B5A82FCDAC8181",16))
  65. print hex(decode("Wh4bh"))
Success #stdin #stdout 0.02s 8128KB
stdin
import numpy as np
from scipy.optimize import fsolve

# Define parameters
alpha = 1.0
T0 = 300
g4 = -2.0
g6 = 1.0

# Define g2 as a function of T
def g2(T):
    return alpha * (T - T0)

# Define the free energy function
def F(P, T):
    return 0.5 * g2(T) * P**2 + 0.25 * g4 * P**4 + (1/6) * g6 * P**6

# Define the derivative of F with respect to P
def dF_dP(P, T):
    return g2(T) * P + g4 * P**3 + g6 * P**5

# Function to find P_s for a given T
def find_Ps(T):
    # Initial guess for P_s
    P_guess = 1.0
    # Solve dF/dP = 0
    P_s = fsolve(dF_dP, P_guess, args=(T))[0]
    return P_s

# Function to find T_c where F(P_s, T) = F(0, T)
def find_Tc():
    # Define a function for the difference in free energy
    def delta_F(T):
        P_s = find_Ps(T)
        return F(P_s, T) - F(0, T)
    # Initial guess for T_c
    T_guess = 310
    # Solve delta_F = 0
    T_c = fsolve(delta_F, T_guess)[0]
    return T_c

# Find T_c
Tc = find_Tc()
print(f"Curie Temperature T_c: {Tc}")

# Find P_s at T_c
P_s = find_Ps(Tc)
P5_squared = P_s**2
print(f"P_5^2(T_c): {P5_squared}")
stdout
0x1406e058